Rotating Hinge Knee Endoprosthesis Surgical Technique

Aesculap Orthopaedics

The innovative hinged knee

EnduRo Portfolio	4
Preoperative planning	5
Brief instructions	6
Operative steps	8
OPTION: Applying reference marks	8
Preparation of the tibia	9
Tibial resection variants	10
Tibial resection	12
Determining the size of the tibial components	13
Preparation of the tibial box	14
Preparation of the femur	16
Distal femur resection	17
Completing the femur resection	20
Preparation of the femoral box	21
Assembly of the femoral trial box	24
Preparation of the patella	27
Assembling the final implants	29
Instruction for explantation	34
Implants	38
EnduRo implant dimensions and design	38
Compact matrix of implants	42
Implant ordering details	44
Overview of instruments, X-ray templates, sawblades and material	48
Overview of instruments	50
Compact matrix of implants (for rip out)	59

Portfolio

Femoral extension stems

- Cementless: 12 20 mm, 2 lengths (117, 177 mm), 5°/7°
- Cemented: 12, 15, 18 mm, 2 lengths (77, 157 mm), 6°

Femur spacer

- Distal
- Postero distal
- 4, 8, 12 mm (for details, see matrix of implants)

Femoral components

- 3 sizes, right/left for each size
- AP offset option for shafts, ± 2 mm

Patellae

- 6 sizes
- Ø 26 x 7 mm, Ø 29 x 8 mm, Ø 32 x 9 mm, Ø 35 x 10 mm, Ø 38 x 11 mm, Ø 41 x 12 mm

PE gliding surfaces

- 3 sizes
- 10, 12, 14, 16, 18, 20, 22, 24 mm
- Rotation limit ± 12°

Tibial hemi spacer

- 3 sizes
- Symmetric
- I ML offset option \pm 6 mm (\pm 4 mm for T1)

Tibial hemi spacer

- RM/LL and RL/LM
- 4, 8, 12, 16 mm

Tibial extension stems

- Cementless: 11 20 mm, 2 lengths (92 mm, 172 mm)
- Cemented: 12, 15, 18 mm, 2 lengths (52 mm, 92 mm)

Preoperative planning

In order to achieve satisfying therapy results with the EnduRo knee system, bone defects as well as possible functional disorders of the soft tissue must be analysed carefully. It is very important to know the reasons why a primary endoprosthesis failed so that the errors are not repeated in the future.

Further parameters for ensuring best possible operative results are:

- Functionality of the extensor mechanism
- Removal of the primary endoprosthesis
- Preservation of bone substance
- Restoration of good axis orientation
- Functional stability
- Restoration of the joint line

EnduRo X-ray templates for X-ray image analysis during preoperative planning are available, which help to determine the following parameters:

- Angle between anatomic and mechanical femur axis
- Resection heights
- Size of the implants
- Entry points for intramedullary alignment
- Need for and dimensions of spacers and extension stems

Extensive losses of bone substance can be compensated with the EnduRo knee system:

- Maximum distal femur bone losses:
- F1 distal: 19 mm, F2 distal: 20.5 mm, F3 distal: 22 mm
- F1 posterior: 15 mm, F2 post.: 20.5 mm, F3 post.: 22 mm
- Maximum tibial bone losses:

T1-T3: 40 mm

Indications:

Severe knee joint disorders which cannot be treated by other therapies:

- Degenerative arthrosis
- Rheumatoid arthritis
- Posttraumatic arthrosis
- Symptomatic knee ligament instability
- Knee-joint ankylosis
- Severe knee-joint deformities
- Revision/Replacement operations

EnduRo is indicated for use in cases of functional deficiency of the collateral ligaments.

Contraindications:

See instructions for use, TA012000

Please note:

The EnduRo knee system is used in cases of severe primary bone defects, collateral ligament insufficiency and in cases where revision is indicated. In these cases, varus/valgus and rotational forces are brought to bear on the linked femoral and tibial components, resulting in a potentially increased risk of loosening. Aesculap therefore recommends that the femoral and tibial components for the EnduRo knee system only be implanted with extension stem. The surgeon may deviate from this at his/her own discretion.

Brief instructions

OPTION: Applying reference marks

The joint line feeler NQ708R is attached to the distal contact plate NQ709R and screwed in place. A mark is made as reference mark on the anterior side of the femur, e. g. level with the proximal end of the primary femoral shield. The joint line feeler is fixed in this position by means of the screw A, which then remains tightened and is not loosened again during the remaining course of the operation. Remove all primary implants. Collateral ligaments may also be resected.

Please note:

The availability of the implants required according to preoperative planning is ensured using the implant matrix (see annex).

Preparation of the tibia

The point of entry for step drill NP410R and reamers is determined if necessary with the help of X-rays or via the AP distance from 1/3 to 2/3. The intramedullary canal is reamed as deeply as possible using the long reamer until stable anchorage is achieved for precise axis alignment. After tibial resection, reaming is repeated at the desired diameter to the required depth in order to achieve a pressfit connection in cementless procedures, or to make room for the cement layer in cemented variants. The reamers have markings for the different extension stem lengths.

Tibial resection variants

1. Version:

The alignment system, including tibial cutting block, is assembled completely and fitted onto the reamer. The resection height is determined by means of the cutting height feeler NE425R in the sawing slot, which has been adjusted to the desired resection. Fix this position by tightening the fixation screw at the side. The position of the sawing cut can be checked by means of the cutting depth gauge NM350R.

2. Version:

The complete alignment system, including tibial cutting block, is fitted onto the shaft of the reamer. Contact is made with the tibial plateau by means of the cutting depth gauge in the sawing slot. The cutting depth is now determined stepwise via the inserted cutting height feeler (shift distally with fixation screw loosened) by means of the feeler's snap mechanism.

Option:

The position of the leg axis can be checked by means of the axis control rod NE331R (with sleeve)/NP471R (without sleeve), which is inserted into the borehole of the slide bar.

Connector NP677R, connection block (slide bar) NP678R, adapter for tibial cutting block NE195R, tibial cutting block (right NE196R/left NE197R)

The tibial cutting block is fixed in the desired position by means of two parallel headless pins and one convergent headed pin. The alignment system and the reamer are removed. For this purpose, the adapter NE195R is released by simultaneously pressing the two pushbuttons of the tibial cutting block, and is then removed by pulling in a distal direction.

Next remove the connector NP677R and the connection block NP678R in a proximal direction. The reamer is removed in a proximal direction by turning clockwise with the handle, which is first reattached.

Tibial resection

Tibial resection is performed using a sawing blade 1.27 mm thick.

Sawing cuts for the 4, 8, 12 and 16 mm hemispacers may also be performed by distal change of position of the cutting block. The positions at which the hemispacers end in a sagittal and medial/lateral direction must be taken into account.

Depending on which side is being operated on, either the chisel NP024, or NP025R is used for sagittal hemispacer resection. Another option is to use a compass saw.

Determining the size of the tibial components

Depending on the tibia resection, the medullary cavity must now be reamed out once more to the required depth using the reamer. If hemispacers are used on both sides, their height is subtracted from the reaming depth.

The trial tibial plateau which best covers the bone in ML and AP directions is selected, and the corresponding trial hemispacer is snapped into place underneath the same, if applicable.

Option:

The position of the leg axis can be checked by means of the axis control rod which is inserted into the handle. The optimal ML, AP and rotational position is determined by means of the ML positioning device NP466R, which is inserted, and on which the required trial tibia extension stem has been screwed in place. The anterior mark indicates the ML position. This ML value is noted down.

The tibial trial plateau is fixed in place in this correct ML, AP and rotational position by means of two short headed pins.

Please note:

When preparing the tibia, the required buildup height (thickness of tibial plateau + PE sliding surface + optional spacers) for reconstruction of the joint line should be taken into account at an early stage; in particular, the tibial plateau should not end up too far distal, as otherwise there may not be sufficient space in the ML dimension to accommodate the plateau box in the tibial head, which could result in ruptures due to excessive strain. The buildup height should therefore preferably be achieved by using hemispacers on both sides rather than by a higher uniform surface.

Preparation of the tibial box

The ML positioning device is removed.

The guide link NP463R and the drilling sleeve in the respective required size (T1 NP457R, T2/T3 NP458R) are fitted onto the tibial trial plateau (T1 NP451R, T2 NP452R, T3 NP453R). The holder NP459R is positioned on the handle and the drilling sleeve for steadying. Two overlapping holes are drilled – by reattaching the drilling sleeve in a 180° rotated position – up to the depth gauge limit using the 18 mm Ø depth gauge drill NP456R.

The result is a binocular-shaped contour.

The box shape is completed as follows using the rasp:

The handle NP495R, adapter NP467R, box rasp (T1 NP464R, T2/T3 NP465R) + connecting piece (up to Ø 14 mm NQ846R, up to Ø 17 mm NQ843R, up to Ø 20 mm NQ831R) and trial shaft in the required size and ML position are assembled.

This rasp assembly is driven into the tibial plateau up to the stop position through the guide link – or without the guide link.

The depth of the plateau box seating must be taken into account.

Trial shaft, connecting piece, box rasp, adapter NP467R, handle NP495R

Preparation of the tibia is now completed, and the tibia is fixed secure against rotation by the box rasp. Both pins can therefore be removed. Insert covering NP479R in order to prevent contaminants from entering the borehole for the trial rotation axis.

Preparation of the femur

The size of the femur is determined with the help of the femur measuring gauges F1/F2 NP441R and F3 NP442R. The gauges indicate the respective AP and ML dimensions. Further marks on the instrument indicate which distal and postero-distal femur spacers are available in each case.

The point of entry for the step drill NP410R in the distal femur is determined if necessary with the help of radiographs. Drilling is performed in the selected angle, taking into account the femoral curvature and other patientspecific aspects.

As with the tibia, alignment for distal femur resection should if possible be effected using a long, thin reamer for precise detection of the axis. The reamers have marks for the different femur extension stem lengths.

Distal femur resection

The alignment system NQ702R for the distal femur cut, with inserted handle NQ474R, is fitted with the sawing block holder NQ703R, to which the distal femur sawing block NP411R is in turn attached. This can be locked in place in a neutral position for the respective femur size, or in a more proximal or distal position, and screw B is tightened for this purpose. The desired angle between anatomic leg axis and mechanical axis (5° or 7° for cementless and 6° for cemented femur extension stems) for the correct-side leg which is to be operated on (left or right leg) is set and fixed by means of screw C. The alignment system is then slid onto the reamer shaft until the bone is contacted and is fixed in place via screw A. In revision cases/bone loss the alignment system with in neutral cutting slot inserted cutting depth gauge NM350R can be slided onto the reamer shaft until bone contact of depth gauge. Thereafter the femur sawing block has to be fixed in place by using two headless pins and can be switched 2 mm proximal for plane cut.

Option:

The joint line positioning device NQ708R with its guide finger is attached to the continuous sawing slit of the distal femur sawing block NP411R. The alignment system is then slid onto the reamer shaft until the bone is contacted and is fixed in place via screw A. The cutting block is now shifted until the positioning tip coincides with the anterior mark of the primary femur implant. If necessary, this mark is used as reference for distal or proximal shift of position. This resection position is fixed by means of screw B. The desired angle between anatomic leg axis and mechanical axis (5° or 7° for cementless and 6° for cemented femur extension stems) for the correct-side leg which is to be operated on (left or right leg) is set and fixed by means of screw C.

The sawing cuts can be checked by means of the cutting depth gauge in the sawing slot.

Distal femur cut-alignment system assembly: distal sawing block NP411R, holder NQ703R, distal alignment system NQ702R and handle NQ474R.

Distal femur resection

The cutting block is affixed to the anterior femur by means of two parallel headless pins and one/two convergent headed pins. The cutting depth gauge, the joint line positioning device and the alignment system are removed [undo screw A (underneath, hidden from view) and B].

The reamer can be left in the femoral canal for the sawing cuts.

The distal femur cut is carried out in the selected plane of resection. If required, additional resection cuts are made for the distal or postero-distal femur spacers using the appropriate sawing slit.

If resection was made for distal femur spacers, distal trial spacers with analogous dimensions must be slid into place on the reverse side of the 4-in-1 sawing block.

The required 4-in-1 cutting block (F1 NM731R, F2 NM732R and F3 NM733R) is slid into position on the reamer shaft with the AP orientation sleeve, which is available in the variants Neutral NE172R and \pm 2 mm NE173R, fitted in place. In order to avoid anterior undercutting of the femoral cortex, the cutting depth gauge is affixed in the anterior sawing slit for checking.

Option:

Two handles NE730R can be attached to the cutting block for better rotational alignment.

Completing the femur resection

The cutting block is fixed in the def. rotational position via two long headless pins through the two parallel anterior boreholes. The handles, orientation sleeve, cutting depth gauge and reamer are removed. For large diameters, the cutting block must be removed for this and must subsequently be reattached.

The cutting block is additionally in place by two long fixed in place by means of one or two long headless pins through the convergent anchorage boreholes. Afterwards, the two parallel pins have to be removed.

Completing the femur resection:

The four femur resection cuts are performed in the following sequence:

- 1. Anterior parallel cut
- 2. Posterior parallel cut (incl. spacer cut if required)
- 3. Posterior chamfer cut
- 4. Anterior chamfer cut

If a 12 mm postero-distal femur spacer is required, the special 12 mm cutting block NP431R is attached to the bone and fixed in place with a pin, and resection is then performed using the appropriate sawing slit.

If bad quality of anterior surface or because of change of rotational position, the 12 mm cutting block can be fixed by the distal pin of the 4-in-1 cutting block.

The reamer with the appropriate diameter is screwed into the medullary canal up to the desired depth for final preparation of the medullary space.

Preparation of the femoral box

The required distal or postero-distal trial spacer(s) are, if applicable, screwed onto the right or left trial femur as appropriate for the leg undergoing surgery (right: F1 NP407R, F2 NP408R, F3 NP409R; left: F1 NP404R, F2 NP405R, F3 NP406R). The frame for alignment of the trial femur and for femoral box preparation is selected in the required size (F1 NP421R, F2 NP422R, F3 NP423R) and fitted onto the distal part of the trial femur. It is fixed in place by the screw at the side.

If necessary, the screw driver NE181R can also be used for this purpose.

Femoral box alignment assembly: reamer, trial femur assembly, femoral box alignment device and sleeve for femoral box alignment

Preparation of the femoral box

The femoral box alignment device (F1 NP415R, F2/3 NP416R) is inserted into the selected trial femur fitted with distal or postero-distal trial spacers, if applicable, and on which the frame for femoral box preparation has been screwed in place. When doing this, care must be taken to ensure that the alignment device has the correct size and the appropriate marking for the left or right leg undergoing surgery (L=left, R=right leg), and the fastener on the frame must be closed. The sleeve for femoral box alignment (L6°/R6° NP417R and L7°R5°/L5°R7° NP418R) is inserted into the femoral box alignment device at the correct angle. This assembly of the femoral box alignment device is slid onto the reamer shaft, or driven into position using the planar femoral impactor attachment (NQ414) connected to the handle, until fully in contact with the inner femoral bone surface.

Please note:

In order to avoid injury of the dorsal soft tissue structures it is advisable to detach these beforehand and to protect them with a suitable spatula.

The central milling guide in the required size (F1 NP436R, F2/F3 NP437R) is attached to the frame for femoral box preparation and secured in place for preparation of the femoral box. Milling is then performed with the depth gauge milling cutter NP435R up to the stop position.

Next, the turn-around guide (F1 NP438R F2/F3 NP439R) is inserted, milling is performed and a further hole is cut by rotating the guide for 180°. As last step, the guide is removed.

The trial femur is fixed in place in this position by means of two anterior headed pins. The sleeve, the femoral box alignment device and the reamer are subsequently removed.

In order to remove the remaining bone, the guide for the U-chisel in the required size (F1 NP433R, F2/F3 NP434R) is inserted into the frame for femoral box preparation and secured in place. The U-chisel NP443R is connected to the handle and driven in up to the stop position.

In order to ensure optimal fit of the femur trial shaft, the medial and lateral inner surfaces are shaped with the rasp NQ832R, which is guided by the trial shaft connected to it. The rasp is driven in twice (rotating it by 180°) up to and including the last, wide tooth at the proximal end.

The flat chisel NP432R is connected to the

handle. The femoral box is carved out on the

medial side up to the stop position with the

long side of the blade touching the inner,

medial side of the femoral box frame.

34

Trial shaft, rasp NQ832R and handle NP495R.

Assembly of the femoral trial box

The appropriate trial hinge ring (F1/F2 NP445R, F3 NP446R) is inserted into the femoral trial box with the required size, and for the left or right leg, as appropriate, and screwed in place via the trial hinge axis NP444R.

The selected femoral trial extension stem is screwed onto the adapter that has the correct angle and length. The attachment screw (NS001R) is screwed into the adapter for one or two revolutions of the thread. The extension stem is next inserted into the proximal guide of the femoral trial box and loosely screwed in place from the distal side, so that there is still some play in the AP direction for self-centring. This trial femoral box assembly is inserted manually into the trial femur.

Complete femoral trial box assembly:

Femoral trial box, extension stem adapter, screw (NS001R) for extension stem adapter $(5^{\circ}/7^{\circ} \text{ cementless})$ and trial extension stem. For the cemented extension stem variant (6°), the trial extension stem and extension stem adapter form a unit.

The configured trial femoral box is finally driven completely into the trial femur.

The extension stem, which has now aligned itself in the AP direction, is fixed in this defined position by tightening the intercondylar attachment screw using the screw driver NE181R.

The two pins in the femur can now be removed.

Assembly of the femoral trial box

The trial PE gliding surface in the required size (which depends on the femur size) and height can now be selected and fitted onto the tibial trial plateau after removing the covering of the borehole for the rotational axis.

Further heights from 16 to 24 mm are formed if required by combination with the 6 mm supplementary plates. The required trial rotational axis is screwed into the trial hinge ring using the screw driver NP440R. The rotational axis is available in two lengths (short, NP447R, up to 16 mm PE height, or long, NP449R, from 18 mm PE height upwards). Joint stability in flexion and extension can now be tested, and a higher or lower PE gliding surface is selected in accordance with the result. It is recommended to do the testing with patella. When selecting the height of the PE gliding surface, care should be taken to ensure that the system is sufficiently under tension despite the protection from dislocation immanent in the system. If a cemented extension stem procedure was selected, a larger diameter must be reamed up to allow for the cement layer. Alternatively, thinner extension stem can be used (-2 mm). Reamers with Ø 14, 15, 17, 18 and 20 mm are available.

Preparation of the patella

The thickness of the patella is measured using the patella forceps. This thickness should not be exceeded after implantation of the patella implant (see table on page 35). A decreased patella thickness after implantation should be aimed for.

The forceps are adjusted for the selected resection height.

Resection is performed through the cutting blade guide. The cutting attachment is subsequently removed.

The drilling gauge is inserted into the patella forceps. The patella is held in place in the patella forceps by the snap-in mechanism. The three holes for the pins are drilled using the 6 mm \emptyset depth gauge drill. The patella size is determined by means of the patella trial implants.

Assembling the final implants

The required final implants are selected and prepared based on the result of the trial reposition.

The rotational axis (metal) is correctly inserted into the black bearing sleeve (synthetic material). Both together are then inserted into the seating borehole of the tibial plateau. Finally, the locking ring is screwed on.

Alternative A:

The locking ring is tightened with 27 Nm using the torque wrench NE184RM – connected to the locking ring spanner (F1 NP462R (for heights 10 mm and 12 mm), F2/F3 NP454R), and over this the guide NP144P and the tibial plateau holder as counterholder.

Alternative B:

Alternatively can be used for F1 highs 10 and 12 mm also the tibia plateau holder NQ839R. His arms engage medial and lateral in the tibia plateau recesses and hold it tight. The guide NP144PM is inserted in this holder. Inside the guide is the locking ring spanner for F1 10 and 12 mm NP462RM inserted and fixed by the screwed on holding down clamp NP141R.

The defined tibial extension shaft is screwed under the tibial plateau, taking into account the correct medial/ lateral position of the tibial trial extension stem.

The nut NE185R is fitted onto the torque wrench NE184RM. The extension stem is now tightened with 20 NM, using the tibial plateau holder NQ830R as counterholder.

The tibial spacers are, if required, screwed underneath the tibial plateau using the screw driver NE181R.

47

The AP extension stem position of the explanted trial femur serves as reference for assembling the final femur implant.

Please note:

The securing nut is in sterile package together with the femur implant.

Option:

The distal or postero-distal fermur spacers are, if required, screwed into the femur implant using the screw driver NE181R.

The tension screw, which is supplied with the selected femur extension stem, is inserted into the selected femur extension stem and loosely screwed in place with the extension stem nut NR400K, taking into account the ML extension stem marking and the AP extension stem nut marking.

The extension stem is inserted into the femur box and screwed tightly in place by hand in the correct AP alignment. The femoral extension stem, which is held by the extension stem holder NQ834R, is tightened in place with 27 Nm in the correct AP position using the torque wrench NE184RM with attached nut NE185R. The extension stem holder NQ834R has a special holding aperture for the cemented femur extension stem with 12 mm diameter.

The sealing mask, which can be cut to size for the required AP length, is then inserted into the femur box aperture in order to prevent entry of cement. This mask is in a sterile package together with the femur implant.

Assembling the final implants

Please note:

Tibia and femur implants must be cemented. The extension stem can be used either with cement or cementless, depending on the selected variant.

Implantation sequence:

- Tibial plateau
- Femur
- PE gliding surface
- Patella

The tibial plateau holder NQ570R is connected to the handle and the tibial insert NQ569. The tibial plateau is attached to this instrument by the L-shaped hooks and secured by tightening the toggle screw, and is then driven perpendicularly into the bone in the correct rotational position.

Option:

The tibial impactor NP468 is connected to the handle. The tibial plateau is inserted by hand in the correct rotational position and then driven perpendicularly into the bone.

The femur insert in the required size (F1 NQ566, F2 NQ567, F3 NQ568) is inserted into the femur holder NQ570R, and the handle for driving in is attached. The two holding fingers are pushed apart, the femur is inserted and they are then pushed back together again. The holding fingers engage the two (medial and lateral) gaps in the femur and are fixed in this position by tightening the toggle screw.

The femur component is driven in using the implant holder. This step can be done with the PE gliding surface already fitted, which then guides the femur.

Option:

The femur is fully driven in in the correct position using the impactor NQ459 (concave) which is attached to the handle.

All cement residues must be removed carefully in order to avoid third body wear. Especially the rotational axis must be free of cement residues in order to avoid contact corrosion. It is recommended to allow the cement to harden in extension with PE gliding surface fitted and hinge ring placed over the rotational axis. The selected extension strain is reached by this procedure, and the femur implant centres itself on the joint line.

Please note:

Especially by using cemented extension stems, cement residues can be left in the dorsal area. To remove all cement, the pre coupled hinge mechanism has to be disconnected and the PE gliding surface need to be removed.

The PE gliding surface is placed back and the hinge ring is again placed over the rotational axis. The axis is now centered in the hinge ring and the knee joint is in flexion. Afterwards the adapter for cone joining NP420R is inserted into the counterholder NP419R that his tip with internal thread looks forth some millimeters. The adapter is now screwed by visibility onto the rotational axis by hand and following the counterholder has to be slidet to tibia plateau direction. The spacer piece is now inserted into the free space between both instruments.

Assembling the final implants

The cone is joined applying the torque wrench NE184RM with 20 Nm in clockwise direction.

Since the thread has a low gradient, several revolutions are necessary.

The adapter for joining the cone is then removed by turning counterclockwise.

The securing nut, which is supplied with the femur implant, is inserted into the holder NP455R, is secured by shifting the locking ring downward and is screwed onto the thread by hand.

The femur insert is inserted into the holder NQ570R, is connected to the handle and is attached to the femur as counterholder.

The securing nut is tightened with 20 Nm using the torque wrench.

The patella is implanted using the press-on adapter which is inserted in the patella preparation forceps.

Please note:

All cement residues must be removed carefully in order to avoid third body wear.

Instruction for explantation

Decoupling of femur and tibia plateau

Remove femur securing nut by turning counterclockwise. Use torque wrench NE184RM with inserted holder NP455R.

As counterholder attached to the femur, the handle NP495R connected to holder NQ570R with inserted femur insert (F1 NQ566, F2 NQ567 or F3 NQ568) is used.

The rotational axis has to be loosen from hinge ring by giving an impulse shock in distal direction. Use therefore a suitable punch with tip (not content of the instruments).

Situation – PE exchange

Detach old PE gliding surface. Loose locking ring counterclockwise by using torque wrench spanner and guide. Detach now locking ring. Remove old parts inside tibia plateau.

Alternative A:

Please note:

Hold tibia by hand as the counterholder NQ830R can not be used with implanted tibia plateau. To preserve the cement-bone stock, Aesculap recommends Alternative B.

Alternative B:

Alternatively can be used for F1 highs 10 and 12 mm also the tibia plateau holder NQ839R. His arms engage medial and lateral in the tibia plateau recesses and hold it tight. The guide NP144P respectively NP144PM is inserted in this holder. Inside the guide is the locking ring spanner for F1 10 and 12 mm NP462RM or F2/F3 NP454R inserted. Select new PE which fit to femur size. Open package and use all four sterile parts which are inside.

The old rotational axis could have a cone or thread defect. The locking ring could be defect which would lead to a not tightened situation.

The new components have to be inserted in the tibia plateau and tightened with 27 Nm. As the tibia plateau is already implanted, the counterholder NQ839R as well as the other instruments described in step Assembling the final instruments have to be used.

Connect femur and tibia plateau again by following the surgical technique.

Situation – Femur exchange

Separate femur from tibia plateau as described in chapter "Decoupling of femur and tibia plateau".

Detach old PE gliding surface. Loose locking ring counterclockwise by using torque wrench spanner and guide described in chapter "PE exchange". Detach locking ring. Remove old parts inside tibia plateau.

After release of femur by e.g. chisel, the handle NP495R connected to holder NQ570R with inserted femur insert is attached to the femur. Afterwards extractor NP684R is latched to handle and used to remove the femur by sliding handle piece distal.

Prepare new femur implant. Select new PE which fit to femur size. Open package and use all four sterile parts which are inside as old parts could be defect. The new components have to be inserted in the tibia plateau and tightened with 27 Nm.

Please note:

To tighten the tibia looking ring please refer to step 62A or 62B.

Situation – Tibia exchange

Separate femur from tibia plateau as described in chapter "Decoupling of femur and tibia plateau".

Detach old PE gliding surface.

Loosen old tibia plateau e. g. by using a chisel. Maybe the medial and lateral recess for the tibia plateau holder have to be cleaned from cement leftovers.

The tibia plateau holder NQ570R is connected to the handle NP495R with inserted tibia insert NQ569. This assembly is attached to the tibia plateau by the L-shaped hooks and secured by tightening the toggle srew. Afterwards extractor NP684R is latched to handle and used to remove the tibia plateau by sliding handle piece distal.

Configurate tibia plateau, attach bone cement, implant and joining cone as described in the surgical technique.

Implants

EnduRo implant dimensions and design

Important characteristics of the EnduRo femur - femur extension stems and femur spacer implants

- 3 sizes (comp. e.motion[®] Size F3/F5/F7), left/right
- Bone cuts (condyles) correspond to e.motion[®]
- Width of femur box 23 mm
- Hyperextension stoppage at 3° for all sizes

Size	ML	AP	Box	Н	Trochlear depth	Th
F1	60.0	54.0	40.0	26.5	4.5	7.0
F2	68.0	62.1	46.0	29.0	5.0	8.5
F3	76.0	70.0	52.0	31.5	5.5	10.0

- Cemented: 6°
- Length: 77, 157 mm
- Diameter: 12, 15, 18 mm
- Cylindrical and polished
- 4 longitudinal grooves to avoid risk of embolism

- Length: 117, 177 mm
- Diameter: 12 20 mm (steps of 1 mm)
- Slightly tapered
- 10 longitudinal grooves (Wagner profile)

Patella dimensions

Size	D	Н	
1	26	7	
2	29	8	
3	32	9	
4	35	10	
5	38	11	
6	41	12	

- Distal spacers, heights 4, 8 and 12 mm
- Postero-distal femur spacers, heights 4, 8 and 12 mm (for details, see matrix of implants)
- Fixed in place via a screw in the distal part
- Cement pockets 1 mm deep

The details of the axis and cone mechanism

Compatibility of rotation axis elements

In case of unsterile or damaged rotation axis, bearing sleeve or nut you'll find spare parts for proper treatment in the displayed matrix.

		Replaceat PEEK bear gliding su	le by axis/n ing sleeve c rface:	ut or of PE		Replaceab PEEK bear gliding sur	le by axis/n ing sleeve o face:	ut or of PE		Replaceabl PEEK beari gliding sur	e by axis/n ng sleeve o face:	ut or f PE
-	Axis/parts	54	50	50	Axis/parts	54	50	50	Axis/parts	54	50	50
	to swap	F1	F2	F3	to swap	F1	F2	F3	to swap	F1	F2	F3
1	F1 10 mm	-	-	-	F2 10 mm	14 mm	-	-	F3 10 mm	16 mm	12 mm	-
	F1 12 mm	-	-	-	F2 12 mm	16 mm	-	10 mm	F3 12 mm	18 mm	14 mm	-
	F1 14 mm	-	10 mm	-	F2 14 mm	18 mm	-	12 mm	F3 14 mm	20 mm	16 mm	-
	F1 16 mm	-	12 mm	10 mm	F2 16 mm	20 mm	-	14 mm	F3 16 mm	22 mm	18 mm	-
	F1 18 mm	-	14 mm	12 mm	F2 18 mm	22 mm	-	16 mm	F3 18 mm	24 mm	20 mm	-
	F1 20 mm	-	16 mm	14 mm	F2 20 mm	24 mm	-	18 mm	F3 20 mm	-	22 mm	-
	F1 22 mm	-	18 mm	16 mm	F2 22 mm	-	-	20 mm	F3 22 mm	-	24 mm	-
	F1 24 mm	-	20 mm	18 mm	F2 24 mm	-	-	22 mm	F3 24 mm	-	-	-

This means e. g. for F1 10 mm: Axis, nut, PEEK bearing sleeve and PE gliding surface F1 12 mm have to be used.

Spare part

Just in case the femur securing nut becomes unsterile, this implant is separately available with article code: NR860K

Implants

EnduRo implant dimensions and design

Important characteristics of the EnduRo tibia - tibia extension stems and tibia spacer implants

- 3 sizes (comp. e.motion[®] sizes T3/T5/T7)
- Seating for tibial extension stems
- Offset \pm 6 mm (for size T1 \pm 4 mm)
- Symmetric plateau design
- Cemented

Size	ML	AP	AP/ML	В
T1	67	44	2/3	23.7
T2	75	50	2/3	27.7
Т3	83	56	2/3	27.7

Cemented

- Length: 52, 92 mm
- Diameter: 12, 15, 18 mm
- Cylindrical and polished
- With asymmetric "collar" for increased stability
- 3 grooves to avoid risk of embolism

Cementless

- Length: 92, 172 mm
- Diameter: 11 20 mm (steps of 1 mm)
- Slightly tapered
- With asymmetric "collar" for increased stability
- 10 grooves (Wagner profile)

- Spacers, heights 4, 8, 12 and 16 mmScrewed in from underneath
- Anatomic medial or lateral design
- Cement pockets 1 mm deep

EnduRo tibia spacer (dimensions in mm)

		Tibia 1	Tibia 2	Tibia 3
	Original ML	67	75	83
	Original AP	44	50	56
With 2 Tibia spacer	4 mm ML	67	75	83
With 2 Tibia spacer	4 mm AP	44	50	56
With 2 Tibia spacer	8 mm ML	61	69	77
With 2 Tibia spacer	8 mm AP	42	48	54
With 2 Tibia spacer	12 mm ML	58.5	66.5	74.5
With 2 Tibia spacer	12 mm AP	41.5	47.5	53.5
With 2 Tibia spacer	16 mm ML	55.5	63.5	71.5
With 2 Tibia spacer	16 mm AP	40.5	46.5	52.5

Combination options

	F1	F2	F3	
T1	ОК	ОК	-	
T2	ОК	ОК	ОК	
T3	-	ОК	ОК	

not compatible

27 Nm for femur extension	20 Nm for tibia extension stems,
stems and tibia locking	taper connection and femur secure
ring	nut

PE size = femur size!

Implants

Compact matrix of implants - Femur elements

Femur, cemented

FemurF1F2F3LeftNB014KNB015KNB016KRightNB017KNB018KNB019K27 Nm for femur extension stems and locking ring

PE size = femur size!

Femur spacer, post./dist.

with screws

femur/tibia F1 F2 T1 OK OK

T1	OK	OK	-
T2	ОК	OK	OK
T3	-	OK	OK
– not	t compat	ible	

F3

Combination options

Femur spacer, distal with screws

Femur	4 mm	8 mm	12 mm
F1	NR861K	NR862K	NR863K
F2	NR864K	NR865K	NR866K
F3	NR867K	NR868K	NR869K

Femur extension stem nut

Femur	4 x 4 mm	4 x 8 mm	4 x 12 mm	8 x 4 mm	8 x 8 mm	8 x 12 mm	12 x 4 mm	12 x 8 mm	12 x 12 mm	
F1	NR366K	NR367K	NR396K	NR368K	NR369K	NR397K	-	-	-	
F2	NR376K	NR377K	NR590K	NR378K	NR379K	NR591K	NR592K	NR593K	NR594K	
F3	NR386K	NR387K	NR595K	NR388K	NR389K	NR596K	NR597K	NR598K	NR599K	

Femoral extension stems, cemented, 6°

	Ø 12 m	M ream: 14	Ø 15 mm	ream: 17	Ø 18 mn	1 ream: 20
Femur	77 mm	157 mm	77 mm	157 mm	77 mm	157 mm
F1-F3	NR291K	NR294K	NR292K	NR295K	NR293K	NR296K

Femoral extension stems, cementless, 5°/7°

		Ø 12 mm	Ø 13 mm	Ø 14 mm	Ø 15 mm	Ø 16 mm
Femur		117 mm 177 mm				
F1-F3	5°	NR402K NR432K	NR403K NR433K	NR404K NR434K	NR405K NR435K	NR406K NR436K
F1-F3	7°	NR502K NR532K	NR503K NR533K	NR504K NR534K	NR505K NR535K	NR506K NR536K
		Ø 17 mm	Ø 18 mm	Ø 19 mm	Ø 20 mm	
Femur		117 mm 177 mm				
F1-F3	5°	NR407K NR437K	NR408K NR438K	NR409K NR439K	NR410K NR440K	
F1-F3	7°	NR507K NR537K	NR508K NR538K	NR509K NR539K	NR510K NR540K	

PE gliding surface

Femur	10 mm	12 mm	14 mm	16 mm	18 mm	20 mm	22 mm	24 mm
F1	NR870M	NR871M	NR872M	NR873M	NR874M	NR875M	NR876M	NR877M
F2	NR880M	NR881M	NR882M	NR883M	NR884M	NR885M	NR886M	NR887M
F3	NR890M	NR891M	NR892M	NR893M	NR894M	NR895M	NR896M	NR897M

Patella

	P1	P2	P3	P4	P5	P6
Ø	26 mm	29 mm	32 mm	35 mm	38 mm	41 mm
Height	7 mm	8 mm	9 mm	10 mm	11 mm	12 mm
	NO481	N0482	N0483	N0484	N0485	NO486

Compact matrix of implants - Tibia elements

Tibia, cem	nented				Combir	nation op	tions fe	mur/tibia	1				
Tibia	T1]	Γ2	T3		F1		F2	F3				
	NB01	1K NBO	012K N	B013K	T1	ОК		ОК	-				
20 Nm fo	or all tibia stems	5			T2	ОК		ОК	ОК				
PF size =	femur size!				T3	-		OK	OK				
0.20					– not co	mpatible		U.	on				
Tibial hen with screws	ni-spacer RM/L	L	S	6		ר ע	ibial he	emi-space	er RL/LN	1	2	(c)	
Tibia	4 mm	l	8 mm	12 mi	m 16	mm	4 mm	I	8 mm	1:	2 mm	16 m	m
T1	NB025	K N	IB026K	NB027	7K NBC)28K	NB035	K N	IB036K	N	B037K	NB03	8K
T2	NB045	K N	IB046K	NB04	7K NBC)48K	NB055	K N	IB056K	N	B057K	NB05	8K
T3	NB065	K N	IB066K	NB067	7K NBC	068K	NB075	ik N	IB076K	N	B077K	NB07	8K
Tibial exte	ension stems, c	emented			<u> </u>		Patella		-				
Ģ	0 12 mm Ream: 14	4 Ø 1	15 mm Rea	am: 17 🜖	ð 18 mm Rear	m:20		P1	P2	P3	P4	P5	P6
Tibia 5	52 mm 92 m	m 52	mm 9	2 mm !	52 mm 92	2 mm	Ø	26 mm	29 mm	32 mm	35 mm	38 mm	41 mm
T1-T3	NR191K NR19	4K NR	192K NI	R195K I	NR193K NR	196K H	leight	7 mm	8 mm	9 mm	10 mm	11 mm	12 mm
Tibia T1-T3	92 NF	Ø11 m 2 mm 1 3171 K N	1m 72 mm IR491K	Ø 1 92 mm NR172K	2 mm 172 mm NR492K	Ø ⁻ 92 mm NR173I	13 mm 172 r (NR49	nm 9 93K N	Ø 14 2 mm R174K	mm 172 mr NR494	n 92 K NR [*]	Ø15mn mm 17: 175K NR	n 2 mm 495K
		Ø 16 m	m	Ø 1	7 mm	Ø.	19 mm		<i>(</i>) 10	mm		Ø 20 mn	n
Tihia	93	2 mm 1	72 mm	92 mm	172 mm	92 mm	172 r	nm 9	2 mm	172 mn	n 92	mm 17	1 2 mm
	NE	2176K N	IR496K	NR177K	NR497K	NR178		N N	2 mm R179K	NR499	K NR'		500K
Compatib	ility of rotation	n axis ele	ments		NH T J/K				NT/ JK	NIN-551			JUUK
		Replaceat PEEK bear gliding su	ole by axis/n ring sleeve o rface:	ut or of PE		Replaceab PEEK bear gliding su	le by axis/ ing sleeve rface:	nut or of PE			Replaceabl PEEK beari gliding sur	e by axis/nu ng sleeve of face:	it or PE
-	Axis/parts	Γ1	Гa	Γa	Axis/parts	Γ1	Гр	ГЭ	Axis/p	oarts	Γ1	Гa	Гa
	to swap	ΓI	٢Z	гз	E2 10 mar	14	FZ	ГJ	to swa	ap O mana	ГI 16 то то	ΓZ	гз
1		-	-	-	F2 10 mm	14 mm	-	-				12 1111	-
1912	F1 12 mm	-	-	-	F2 12 mm	16 mm	-	10 mm			18 mm	14 mm	-
具	F1 14 mm	-	10 mm	-	F2 14 mm	18 mm	-	12 mm		4 mm	20 mm	10 mm	-
	F1 16 mm	-	12 mm	10 mm	F2 16 mm	20 mm	-	14 mm			22 mm	18 mm	-
	F1 18 mm	-	14 mm	12 mm	F2 18 mm	22 mm	-	16 mm	F3 1	8 mm	24 mm	20 mm	-
	F1 20 mm	-	16 mm	14 mm	F2 20 mm	24 mm	-	18 mm	F3 20	0 mm	-	22 mm	-
	F1 22 mm	-	18 mm	16 mm	F2 22 mm	-	-	20 mm	F3 23	2 mm	-	24 mm	-
	F1 24 mm	-	20 mm	18 mm	F2 24 mm	-	-	22 mm	F3 24	4 mm	-	-	-

This means e. g. for F1 10 mm: Axis, nut, PEEK bearing sleeve and PE gliding surface F1 12 mm have to be used.

Spare part

Just in case the femur securing nut becomes unsterile, this implant is separately available with article code: NR860K

Implants

Implant ordering details

Femur, cemented

NB014K	Femur, F1, left
NB015K	Femur, F2, left
NB016K	Femur, F3, left
NB017K	Femur, F1, right
NB018K	Femur, F2, right
NB019K	Femur, F3, right

Femur spacer, distal, with screw

NR861K	Femur spacer, distal, F1, 4 mm
NR864K	Femur spacer, distal, F2, 4 mm
NR867K	Femur spacer, distal, F3, 4 mm
NR862K	Femur spacer, distal, F1, 8 mm
NR865K	Femur spacer, distal, F2, 8 mm
NR868K	Femur spacer, distal, F3, 8 mm
NR863K	Femur spacer, distal, F1, 12 mm
NR866K	Femur spacer, distal, F2, 12 mm
NR869K	Femur spacer, distal, F3, 12 mm

Femur spacer, postero/distal, with screw

NR366K	Femur spacer, post./dist., F1, 4 x 4 mm
NR376K	Femur spacer, post./dist., F2, 4 x 4 mm
NR386K	Femur spacer, post./dist., F3, 4 x 4 mm
NR367K	Femur spacer, post./dist., F1, 4 x 8 mm
NR377K	Femur spacer, post./dist., F2, 4 x 8 mm
NR387K	Femur spacer, post./dist., F3, 4 x 8 mm
NR396K	Femur spacer, post./dist., F1, 4 x 12 mm
NR590K	Femur spacer, post./dist., F2, 4 x 12 mm
NR595K	Femur spacer, post./dist., F3, 4 x 12 mm
NR368K	Femur spacer, post./dist., F1, 8 x 4 mm
NR378K	Femur spacer, post./dist., F2, 8 x 4 mm
NR388K	Femur spacer, post./dist., F3, 8 x 4 mm
NR369K	Femur spacer, post./dist., F1, 8 x 8 mm
NR379K	Femur spacer, post./dist., F2, 8 x 8 mm
NR389K	Femur spacer, post./dist., F3, 8 x 8 mm
NR397K	Femur spacer, post./dist., F1, 8 x 12 mm
NR591K	Femur spacer, post./dist., F2, 8 x 12 mm
NR596K	Femur spacer, post./dist., F3, 8 x 12 mm

NR592K	Femur spacer, post./dist., F2, 12 x 4 mm
NR597K	Femur spacer, post./dist., F3, 12 x 4 mm
NR593K	Femur spacer, post./dist., F2, 12 x 8 mm
NR598K	Femur spacer, post./dist., F3, 12 x 8 mm
NR594K	Femur spacer, post./dist., F2, 12 x 12 mm
NR599K	Femur spacer, post./dist., F3, 12 x 12 mm

Femoral extension stems, cemented, 6°

NR291K	Femur stem, 6°, 12 x 77 mm, cemented
NR294K	Femur stem, 6°, 12 x 157 mm, cemented
NR292K	Femur stem, 6°, 15 x 77 mm, cemented
NR295K	Femur stem, 6°, 15 x 157 mm, cemented
NR293K	Femur stem, 6°, 18 x 77 mm, cemented
NR296K	Femur stem, 6°, 18 x 157 mm, cemented

Femur extension stem nut

NR400K Femur extension stem nut, neutral

Femoral extension stems, cementless, 5°

NR402K	Femur stem, 5°, 12 x 117 mm, cementless
NR432K	Femur stem, 5°, 12 x 177 mm, cementless
NR403K	Femur stem, 5°, 13 x 117 mm, cementless
NR433K	Femur stem, 5°, 13 x 177 mm, cementless
NR404K	Femur stem, 5°, 14 x 117 mm, cementless
NR434K	Femur stem, 5°, 14 x 177 mm, cementless
NR405K	Femur stem, 5°, 15 x 117 mm, cementless
NR435K	Femur stem, 5°, 15 x 177 mm, cementless
NR406K	Femur stem, 5°, 16 x 117 mm, cementless
NR436K	Femur stem, 5°, 16 x 177 mm, cementless
NR407K	Femur stem, 5°, 17 x 117 mm, cementless
NR437K	Femur stem, 5°, 17 x 177 mm, cementless
NR408K	Femur stem, 5°, 18 x 117 mm, cementless
NR438K	Femur stem, 5°, 18 x 177 mm, cementless
NR409K	Femur stem, 5°, 19 x 117 mm, cementless
NR439K	Femur stem, 5°, 19 x 177 mm, cementless
NR410K	Femur stem, 5°, 20 x 117 mm, cementless
NR440K	Femur stem, 5°, 20 x 177 mm, cementless

Femoral extension stems, cementless, 7°

NR502K	Femur stem, 7°, 12 x 117 mm, cementless
NR532K	Femur stem, 7°, 12 x 177 mm, cementless
NR503K	Femur stem, 7°, 13 x 117 mm, cementless
NR533K	Femur stem, 7°, 13 x 177 mm, cementless

NR504K	Femur stem, 7°, 14 x 117 mm, cementless
NR534K	Femur stem, 7°, 14 x 177 mm, cementless
NR505K	Femur stem, 7°, 15 x 117 mm, cementless
NR535K	Femur stem, 7°, 15 x 177 mm, cementless
NR506K	Femur stem, 7°, 16 x 117 mm, cementless
NR536K	Femur stem, 7°, 16 x 177 mm, cementless
NR507K	Femur stem, 7°, 17 x 117 mm, cementless
NR537K	Femur stem, 7°, 17 x 177 mm, cementless
NR508K	Femur stem, 7°, 18 x 117 mm, cementless
NR538K	Femur stem, 7°, 18 x 177 mm, cementless
NR509K	Femur stem, 7°, 19 x 117 mm, cementless
NR539K	Femur stem, 7°, 19 x 177 mm, cementless
NR510K	Femur stem, 7°, 20 x 117 mm, cementless
NR540K	Femur stem, 7°, 20 x 177 mm, cementless

Implants

Implant ordering details

Tibia plateau, cemented

NB011K	Tibia T1
NB012K	Tibia T2
NB013K	Tibia T3

Tibia spacer, cemented, with screws

NB035K	Tibia spacer, RL/LM, T1, 4 mm
NB036K	Tibia spacer, RL/LM, T1, 8 mm
NB037K	Tibia spacer, RL/LM, T1, 12 mm
NB038K	Tibia spacer, RL/LM, T1, 16 mm
NB055K	Tibia spacer, RL/LM, T2, 4 mm
NB056K	Tibia spacer, RL/LM, T2, 8 mm
NB057K	Tibia spacer, RL/LM, T2, 12 mm
NB058K	Tibia spacer, RL/LM, T2, 16 mm
NB075K	Tibia spacer, RL/LM, T3, 4 mm
NB076K	Tibia spacer, RL/LM, T3, 8 mm
NB077K	Tibia spacer, RL/LM, T3, 12 mm
NB078K	Tibia spacer, RL/LM, T3, 16 mm
NB025K	Tibia spacer, RM/LL, T1, 4 mm
NB026K	Tibia spacer, RM/LL, T1, 8 mm

PE gliding surfaces with bearing sleeve, rotation axis and locking ring

NDOZOM	Gliding surface E1 10 mm
	Ghung Surface, FT, TO min
NR871M	Gliding surface, F1, 12 mm
NR872M	Gliding surface, F1, 14 mm
NR873M	Gliding surface, F1, 16 mm
NR874M	Gliding surface, F1, 18 mm
NR875M	Gliding surface, F1, 20 mm
NR876M	Gliding surface, F1, 22 mm
NR877M	Gliding surface, F1, 24 mm
NR880M	Gliding surface, F2, 10 mm
NR881M	Gliding surface, F2, 12 mm
NR882M	Gliding surface, F2, 14 mm
NR883M	Gliding surface, F2, 16 mm
NR884M	Gliding surface, F2, 18 mm
NR885M	Gliding surface, F2, 20 mm

Tibia spacer, RM/LL, T1, 12 mm
Tibia spacer, RM/LL, T1, 16 mm
Tibia spacer, RM/LL, T2, 4 mm
Tibia spacer, RM/LL, T2, 8 mm
Tibia spacer, RM/LL, T2, 12 mm
Tibia spacer, RM/LL, T2, 16 mm
Tibia spacer, RM/LL, T3, 4 mm
Tibia spacer, RM/LL, T3, 8 mm
Tibia spacer, RM/LL, T3, 12 mm
Tibia spacer, RM/LL, T3, 16 mm

NR886M	Gliding surface, F2, 22 mm
NR887M	Gliding surface, F2, 24 mm
NR890M	Gliding surface, F3, 10 mm
NR891M	Gliding surface, F3, 12 mm
NR892M	Gliding surface, F3, 14 mm
NR893M	Gliding surface, F3, 16 mm
NR894M	Gliding surface, F3, 18 mm
NR895M	Gliding surface, F3, 20 mm
NR896M	Gliding surface, F3, 22 mm
NR897M	Gliding surface, F3, 24 mm

Tibia extension stems, cemented

NR191K	Tibia stem, 12 x 52 mm, cemented
NR194K	Tibia stem, 12 x 92 mm, cemented
NR192K	Tibia stem, 15 x 52 mm, cemented
NR195K	Tibia stem, 15 x 92 mm, cemented
NR193K	Tibia stem, 18 x 52 mm, cemented
NR196K	Tibia stem, 18 x 92 mm, cemented

Tibia extension stems, cementless

NR171K	Tibia stem, 11 x 92 mm, cementless
NR491K	Tibia stem, 11 x 172 mm, cementless
NR172K	Tibia stem, 12 x 92 mm, cementless
NR492K	Tibia stem, 12 x 172 mm, cementless
NR173K	Tibia stem, 13 x 92 mm, cementless
NR493K	Tibia stem, 13 x 172 mm, cementless
NR174K	Tibia stem, 14 x 92 mm, cementless
NR494K	Tibia stem, 14 x 172 mm, cementless
NR175K	Tibia stem, 15 x 92 mm, cementless
NR495K	Tibia stem, 15 x 172 mm, cementless
NR176K	Tibia stem, 16 x 92 mm, cementless
NR496K	Tibia stem, 16 x 172 mm, cementless
NR177K	Tibia stem, 17 x 92 mm, cementless
NR497K	Tibia stem, 17 x 172 mm, cementless
NR178K	Tibia stem, 18 x 92 mm, cementless
NR498K	Tibia stem, 18 x 172 mm, cementless
NR179K	Tibia stem, 19 x 92 mm, cementless
NR499K	Tibia stem, 19 x 172 mm, cementless
NR180K	Tibia stem, 20 x 92 mm, cementless
NR500K	Tibia stem, 20 x 172 mm, cementless

Patellae

NO481	Patella, P1, Ø 26 x 7 mm
N0482	Patella, P2, Ø 29 x 8 mm
N0483	Patella, P3, Ø 32 x 9 mm
NO484	Patella, P4, Ø 35 x 10 mm
NO485	Patella, P5, Ø 38 x 11 mm
NO486	Patella, P6, Ø 41 x 12 mm

Overview of instruments and X-ray templates

EnduRo instruments

NP300	
NP301	General instruments
NP302	Manual instruments
NP303	Tibia preparation
NP304	Femur preparation
NP352	Femoral box preparation
NS134	Tibia extension stem preparation, cementless
NS136	Femoral trial extension stems, cementless
NS138	Extension stem preparation, cemented
NP270	Trial spacers

NP350 Hinge axis revision

Patella instruments

LSET - K0003 EnduRo Revision

(Only via Aesculap loaner service)

X-ray templates

NP502

NP021	Set of X-ray templates, scale 1,10:1
NP022	Set of X-ray templates, scale 1,15:1
NQ289	Axis planning

Option: Please order separately

NQ839R	Tibia Stem Holding Key
NP144PM	Guide for Key for Tibia Locking Ring
	, 5 5
ND141D	Helding down clopen for ND144DM
INP141K	Holding down clamp for NP144PIVI
	5
NP462RIVI	Key for Libia Locking King

Saw blades overview

Implant:	Material:	
Femur	CoCrMo (casting alloy)	Cobalt-chromium-molybdenum casting alloy according to ISO 5832-4
Cover for femoral box	PEEK Optima® (LT1)	Medical Grade Polyetheretherketone (provided by Invibio)
Femur hinge axis	CoCrMo (wrought alloy)	Wrought cobalt-chromium-molybdenum alloy according to ISO 5832-12
Cover plug for femur hinge axis	UHMWPE	Ultra-high molecular weight polyethylene according to ISO 5834-2
Securing nut	CoCrMo (wrought alloy)	Wrought cobalt-chromium-molybdenum alloy according to ISO 5832-12
Bearing elements inside femur	PEEK Optima® (LT1CA30)	Medical Grade Carbon Fibre-Reinforced Polyetheretherketone (Invibio)
Femur spacer	CoCrMo (wrought alloy)	Wrought cobalt-chromium-molybdenum alloy according to ISO 5832-12
Screws for fermur spacer	CoCrMo (wrought alloy)	Wrought cobalt-chromium-molybdenum alloy according to ISO 5832-12
Femur extension stem cementless	CoCrMo (wrought alloy)	Wrought cobalt-chromium-molybdenum alloy according to ISO 5832-12
Femur extension stem cemented	CoCrMo (wrought alloy)	Wrought cobalt-chromium-molybdenum alloy according to ISO 5832-12
AP offset nut for femur extension stems	CoCrMo (wrought alloy)	Wrought cobalt-chromium-molybdenum alloy according to ISO 5832-12
Tibia plateau	CoCrMo (casting alloy)	Cobalt-chromium-molybdenum casting alloy according to ISO 5832-4
Mask for tibial component	PEEK Optima [®] (LT1)	Medical Grade Polyetheretherketone (provided by Invibio)
Nut for tibia offset stems (in tibia plateau)	CoCrMo (wrought alloy)	Wrought cobalt-chromium-molybdenum alloy according to ISO 5832-12
Tibias spacer	CoCrMo (wrought alloy)	Wrought cobalt-chromium-molybdenum alloy according to ISO 5832-12
Screws for tibia spacer	Ti6AL4V (wrought alloy)	Wrought titanium 6-aluminium 4-vanadium alloy according to ISO 5832-3
Tibia extension stem cementless	CoCrMo (wrought alloy)	Wrought cobalt-chromium-molybdenum alloy according to ISO 5832-12
Tibia extension stem cemented	CoCrMo (wrought alloy)	Wrought cobalt-chromium-molybdenum alloy according to ISO 5832-12
Rotation axis	CoCrMo (wrought alloy)	Wrought cobalt-chromium-molybdenum alloy according to ISO 5832-12
Gliding surface	UHMWPE	Ultra-high molecular weight polyethylene according to ISO 5834-2
X-ray marker pin	Ti6AL4V (wrought alloy)	Wrought titanium 6-aluminium 4-vanadium alloy according to ISO 5832-3
X-ray marker ball	Tantal (unalloyed)	Unalloyed tantalum for surg. implant applications acoording to ISO 13782
Locking ring	CoCrMo (wrought alloy)	Wrought cobalt-chromium-molybdenum alloy according to ISO 5832-12
Bushing for rotation axis	PEEK Optima® (LT1CA30)	Medical Grade Carbon Fibre-Reinforced Polyetheretherketone (Invibio)

Compact overview of instruments

NP303 Tibia preparation 1111 NP304 Femur preparation, basic tray NP304 Femur preparation, tray insert 5 98 в 3 24 57 NP352 Femoral box preparation NS136 Femoral trial extension stems, cementless

NS134	Tibia ext. stem preparation, cementless, basic tray
ANNA ANNA	
NS134	Tibia ext. stem preparation, cementless, tray insert
HAMAMMAN	
NS138	Ext. stem preparation, cemented, basic tray
BOBBANNAN	
NS138	Ext. stem preparation,
	cemented, tray insert

Overview of instruments

NP270 Tibial trial spacers, basic tray

NP270 Femoral trial spacers, tray insert

Overview of instruments

NP301 General instruments, basic tray

NP301 General instruments, tray insert

NP303 Tibia preparation

Overview of instruments

NP304 Femur preparation, basic tray

NP304 Femur preparation, tray insert

Overview of instruments

NS134 Tibia ext. stem preparation, cementless, basic tray

NS134 Tibia extension stem preparation, cementless, tray insert

-	5	without a	
	—	MCCOR.)
	—	MORTH)
	<u> </u>	NCORD T)
Marteria		Netter)
	s —	Noter)

NS138 Extension stem preparation, cemented, basic tray

NS138 Extension stem preparation, cemented, tray insert

Notes

														PG	41 mm	12 mm	N0486
														P5	38 mm	11 mm	N0485
														P4	35 mm	10 mm	N0484
														P3	32 mm	9 mm	N0483
														P2	29 mm	8 mm	N0482
	12 mm NR863K NR866K NR869K		٤		13					mm 36K 36K		Ш	ŧ	P1	26 mm	7 mm	N0481
3	8 mm IR862K IR865K IR868K		12 x 12 m	NR594K NR599K	m nut	neutral	NR400K		Ø 16 mm	17 mm 177 R406K NR4 R506K NR5		L	Patella		Ø	Height	
er, distal	m 51K N 54K N 57K N		12 x 8 mm -	NR593K NR598K	ension ste	es				mm 1. 35K N 35K N		40K	40K	24 mm	NR877M	NR887M	NR897M
Femur space with screws	Femur 4 m F1 NR86 F2 NR86 F3 NR86		12 x 4 mm -	NR592K NR597K	Femur ext	Femur typ	F1-F3		Ø 15 mm	17 mm 177 R405K NR4 R505K NR5	Ø 20 mm	R410K NR4	CAN NR5	22 mm	NR876M	NR886M	NR896M
S	F3 OK - N		3 x 12 mm NR397K	NR591K NR596K		ream: 20	157 mm NR296K		ц	7 mm 1 8434K N 8534K N	Ę	7 mm 1 8439K N	(539K N	20 mm	NR875M	NR885M	NR895M
ition option. bia	F2 C OK OK OK	-	3 x 8 mm 8 NR369K	NR3 79K NR3 89K	* ¥7	Ø 18 mm -	77 mm NR293K	11	Ø 14 mr	117 mm 17 NR404K NF NR504K NF	Ø 19 mr	117 mm 17 NR409K NF	NK509K	18 mm	VR874M	NR884M	NR894M
Combine femur/ti	F1 0H T2 0H T3 - not com		x 4 mm 8 VR368K	VR378K VR388K		: 17	157 mm NR295K	0	mn	77 mm VR433K VR533K	mu	77 mm JR438K	NK538K	16 mm	JR873M I	R883M I	JR893M I
	F3 B016K B019K locking ring		k 12 mm 8 R396K N	R590K N R595K N	ů	ð 15 mm _{ream}	7 mm IR292K	i, 5°/7°	Ø 13 n	117 mm 1 NR403K N NR503K N	Ø 18 n	117 mm 1 NR408K N		4 mm	R872M N	R882M N	R892M N
2	F2 B015K N B018K N n stems and	I	K 8 mm 4) R367K N	R377K N R387K N	, cemented,	m: 14 (57 mm 7 R294K N	, cementless	mm	177 mm NR432K NR532K	mm	177 mm NR437K	I NK53/K	2 mm 1	871M N	881M N	891M N
nted	F1 6014K N. 6017K NI nur extensio	r, post./dist.	4 mm 4) 366K NI	376K N. 386K NI	insion stems	Ø 12 mm rea	mm 1 291K N	insion stems	Ø 12	117 mm NR402K NR502K	Ø 17	117 mm NR407K	NK50/K	1.	870M NF	880M NF	N M068
Femur, ceme	Femur Left NB Right NB 27 Nm for fer	Femur space	Femur 4 x F1 NR	F2 NR F3 NR	Femoral exte		Femur 77 F1-F3 NR	Femoral exte		Femur F1-F3 5° F1-F3 7°		Femur F1-F3 5°	PT-F3 / PE gliding sur	Femur 10	F1 NR	F2 NR	F3 NR

	6			-		(6	Canal	Compatibil	T1-T3	Tibia				Tihia		Tibial exte	T3	T2	T1	Tibia	Tibial hemi	re size = i	20 Nm for		Tibia	Tibia, ceme	Compact
F1 24 mm	F1 22 mm	F1 20 mm	F1 18 mm	F1 16 mm	F1 14 mm	F1 12 mm	F1 10 mm	Axis/parts to swap			ity of rotati	7				-			nsion stems,	NB065K	NB045K	NB025K	4 mm	-spacer RM,	emur size:	all tibia sten	NBC	_	ented	matrix of
•	1	ı	,	1	•	•	•	FI	gliding surf	Replaceable PEEK bearir	on axis elen	VR176K NF	92 mm 17	Ø 16 mr			92 mm 17	Ø 11 mr	cementless	NB066K	NB046K	NB026K	8 mm	Ē		ns	11K NBO	1 T2		[:] implants
20 mm 18 r	18 mm 16 r	16 mm 14 r	14 mm 12 r	12 mm 10 r	10 mm -	•	•	F2 F	ace:	g sleeve of PE	nents	496K NR	2 mm 92				2 mm 92	د	4	NB067K	NB047K	NB027K	12 mm	e e			12K NB013	T3	U	– Tibia e
nm F2 24	nm F2 22	nm F2 20	nm F2 18	nm F2 16	F2 14	F2 12	F2 10	Axis/pa to swap				177K NR49	mm 172 r	Ø 17 mm			mm 172 r	Ø 12 mm		NBO68	NB048	NB028	16 m				к Т		C	lements
mm -	mm -	mm 24 m	mm 22 m	mm 20 m	mm 18 m	mm 16 m	mm 14 m	F1	gliding	Replace PEEK b		IJK NR17	nm 92 rr	_			mm 92 m	_	U	BK NB(BK NB(BK NBO	m 4 1	Tibi with	3 not compatible	2	1		ombination	
•	•	- B	m -	m -	m -	m -	- -	F2	surface:	eable by axis/nu earing sleeve of		78K NR498	ım 172 mr	ð 18 mm	3N NR493		1m 172 mr	ð 13 mm		075K N)55K N)35K N	nm	ial hemi-spa screws		OK O	O XC	F1 E2	options fem	
22 mm F3	20 mm - F3	18 mm F3	16 mm Fi	14 mm E	12 mm F	10 mm F	-	F3 to		PE		K NR179	n 92 mm	Ø			n 92 mr	Ø		IB076K	IB056K	IB036K	8 mm	icer RL/LM	UK	OK OK	~ 1	2 F3	ur/tibia	
3 24 mm	3 22 mm	3 20 mm	3 18 mm 2	3 16 mm 2	3 14 mm 2	3 12 mm 1	3 10 mm 1	(is/parts swap	gl	PE		K NR499K	172 mm	19 mm	N NR494N		172 mm	14 mm		NB077K	NB057K	NB037K	12 mm	R		Т	Ø		P	
•	- 24 n	- 22 n	4 mm 20 n	2 mm 18 n	0 mm 16 n	8 mm 14 n	6 mm 12 n	F1 F2	ding surface:	placeable by ax EK bearing slee		NR180K	92 mm	Ø 20			92 mm	Ø 15		NB078K	NB058K	NB038K	16 mm	C	N048	eight 7 mm	26 mn	P1	tellae	
	- mr	- mr	- m	- mr	- mr	- mr	- mr			kis/nut or ve of PE		NR500K	172 mm	mm	NR495N		172 mm	mm			T1-T3	Tibia		Tibial ex	I NU482 P	8 mm 8	n 29 mm 3	P2	зÌ	
implant is separately available with article code: NR860K	Just in case the femur securing nut becomes unsterile, this	Spare part							have to be used.	— This means e. g. for F1 10 mm: Axis, nut, PEEK bearing sleeve and PE gliding surface F1 12 mm											NR191K NR194K NR192K NR195K NR193K NR196K	52 mm 92 mm 52 mm 92 mm 52 mm 92 mm	Ø 12 mm ream: 14 Ø 15 mm ream: 17 Ø 18 mm ream: 20	tension stems, cemented	VU483 NU484 NU485 NU486	9 mm 10 mm 11 mm 12 mm	32 mm 35 mm 38 mm 41 mm	P3 P4 P5 P6		

The main product trademark "Aesculap" and the product trademark "e.motion" are registered trademarks of Aesculap AG.

Subject to technical changes. All rights reserved. This brochure may only be used for the exclusive purpose of obtaining information about our products. Reproduction in any form partial or otherwise is not permitted.

Aesculap AG | Am Aesculap-Platz | 78532 Tuttlingen | Germany Phone +49 7461 95-0 | Fax +49 7461 95-26 00 | www.aesculap.com